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Entry flow in a curved pipe 
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(Received 3 April 1974)  

A secondary flow is set up when a fluid flows through a stationary curved pipe. 
The fluid in the middle of the pipe moves outwards and that near the wall in- 
wards. Dean showed that the dynamical similarity of this fully developed flow 
depends on a non-dimensional parameter D = 2(u/R)*(ap/v),  where w is the 
mean velocity along the pipe, v is the coefficient of kinematic viscosity and u is 
the radius of the pipe, which is bent into a coil of radius R. Dean’s analysis was 
limited to small values of D. Later, Barua developed an asymptotic boundary- 
layer theory for large values of D and showed for these values of D that the 
resistance coefficient yc is much larger than that for the corresponding straight 
pipe. The present work deals with the flow in a curved pipe as it develops from 
a uniformly distributed velocity at the entrance to a fully developed profile. 
Barua’s results for the fully developed flow are adopted as downstream conditions 
in the present work. The ratio of the entry lengths of the curved pipe and the 
corresponding straight one is shown to be proportional to D-* when D is large. 
Thus, the entry length for a curved pipe is much shorter than that for the corres- 
ponding straight pipe. 

1. Introduction 
The developing secondary flow which is induced by the circular motion of the 

main body of the fluid in a curved pipe may have important implications for 
blood flow in the human arterial system. For example, it may play a role in the 
cholesterol deposition on the vascular wall and hence may be involved in the 
development of arteriosclerosis. Also, information about the pressure drop in 
the entry region is important in many branches of engineering to determine the 
pumping power needed to overcome curvature-induced pressure losses. Finally, 
the enhanced convective heat exchange in the fluid is of considerable importance 
in designing heat exchangers in nuclear water reactors. 

The problem to be considered is steady incompressible developing flow in the 
entry region of a circular pipe of radius a coiled in a circle of radius R. The 
entrance velocity is assumed to be uniformly distributed with the value V ,  an 
idealized initial condition which models configurations of practical interest. 
This entrance condition can be produced by connecting the pipe to a large vessel 
with an abrupt change in cross-sectional area. 

We shall briefly review previous work on fully developed flow in curved pipes 
and entry flow in straight pipes or channels before describing the physical 
phenomenon of the developing flow in the entry region of a curved pipe. 
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Extensive interest has been shown in curved-pipe flow, both theoretically and 
experimentally (e.g. see Eustice 1911; Taylor 1929). Dean (1927, 1928) found 
that flow in curved pipes depends primarily on a non-dimensional parameter 
D = 2a*Re, where a = a/R and Re = Fa/.. For small I), a uniformly valid 
asymptotic solution was derived by Dean as a perturbation of the parabolic 
velocity profile in a straight pipe. This has been extended, numerically, to a 
moderate value of D by McConalogue & Srivastava (1968). Earlier, Barua 
(1963) deduced from experimental results (Harwes 1930, unpublished) that, for 
large D viscous forces are important only in a thin boundary layer near the wall, 
and that the motion outside the boundary layer is mostly confined to planes 
parallel to the plane of symmetry of the pipe. With these observations and 
assumptions, Barua was able to obtain an asymptotic boundary-layer solution; 
the resistance coefficient obtained from this theory agrees with the observations 
of White & Adler (see Barua 1963). Recently) Greenspan (1973) presented a 
finite-difference solution covering the whole range of Dean numbers for laminar 
flow. However, the numerical viscosity inherent in the finite-difference scheme 
may have overwhelmed the actual viscosity and therefore the results may be 
invalid for large D. Time-dependent fully developed flow in curved pipes was 
analysed by Lyne (1  970) and Zalosh & Nelson ( 1  973). 

Straight pipe 

Previous work on developing flow in straight pipes and channels falls into the 
following four categories: (i) linearizations of the momentum equations; (ii) 
two-zone models, in which a boundary-layer flow matches with the downstream 
perturbation solution for the fully developed flow; (iii) momentum-integral 
techniques; (iv) finite-difference solutions. Recently, Morihara & Cheng (1 973) 
presented a finite-difference solution of the complete Navier-Stokes equations 
for entry flow in a two-dimensional channel. They used Stokes flow (Re = 0) as 
the initial solution of the Navier-Stokes equations, then generated the solution 
for larger Reynolds number by iterating on the quasi-linearized Navier-Stokes 
equations. A fairly complete list of papers representative of each of the above- 
mentioned approaches is given by Morihara & Cheng (1973). Time-dependent 
entry flow in a deformable pipe has been studied by Kuchar & Ostrach (1971). 
Briley (1972) used an alternating direction implicit method to integrate the 
momentum equations, without streamwise diffusion terms. However, the validity 
of a parabolic-flow approximation in the entry region of pipes needs further 
justification. From a critical analysis of the entry flow problem, Van Dyke 
(1970) pointed out that there are two characteristic lengths in channel entry 
flow: a, the half-width of the channel, and axe.  Most of the early work on this 
problem is only valid for downstream distances O(aRe). Van Dyke obtained a 
solution in the upstream region, for distances O(a), and so remedied the dis- 
crepancy between the earlier theoretical results and the experimental data near 
the entrance of the channel. Independently) a similar, more detailed mathemati- 
cal analysis was given by Wilson (1971). 
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Curved pipe 

Now we shall briefly discuss the nature of developing flows in curved pipes. 
The flow appears to develop as follows (Singh 1974). As the fluid enters the pipe, 
a boundary layer like that in a straight pipe develops on the wall but with a 
small azimuthal component of velocity due to the inwardly directed pressure 
gradient, the latter arising from the circular nature of the main central flow. 
The displacement effect of the boundary layer in turn causes an acceleration of 
the flow in the central core plus a secondary flow in the cross-sectional plane. 
Initially there is an inward flow from the entire pipe circumference, with two 
singularities in the central region, a node-like sink at  the origin and a saddle- 
point-like stagnation point; the latter singularity moves outwards as the fluid 
moves downstream, finally vanishing as the cross-flow (from the inside to the 
outside of the bend) sets in. (For further details, plus the interesting consequences 
this flow picture has on the location of the point of maximum shear, see Singh 
(1974).) The flow development just described all occurs within a distance O(a) 
from the entrance. The matched asymptotic solution for this region (Singh 1974) 
breaks down a t  a distance O((aR)*), corresponding, physically, to the point 
beyond which the effect of the centrifugal force, initially small, becomes as 
important as inertia and viscous forces within the boundary layer. The matched 
asymptotic solution developed in turn for this region apparently breaks down a t  
a downstream distance O ( u R e ) .  Presumably this last flow region, at  distances 
O(aRe), is the region of transition to the fully developed flow (Singh, private 
communication). Particularly noteworthy in this analysis is that the entry 
length is of the same order, aRe,  as for a straight pipe, so that the additional 
mixing due to the secondary cross-flow appears to have little effect on this 
important quantity. It might also be noted that for D 5 1, since 

(ccR)* = ( u R e )  D-I, 

the region up to distances O((uR)*) is either larger than that up to distances 
O ( u R e )  or coincident with it, so that for this case the flow becomes fully developed 
before centrifugal forces lose their secondary role. 

In  the high Dean number case, the situation is somewhat different. Centrifugal 
effects are as important as viscosity and inertia almost from the beginning.? 
Much of the flow development occurs within a distance O((uR)*) ,  where these 
three forces balance. In  other words, the motion of the central core of the fluid is 
quite different for the cases of large and small D, and so is the development of 
the boundary layer. The curvature ratio a is smaller than one for most curved 
tubes of interest. This means that the variation of the centrifugal force and the 
pressure gradient direct'ed away from the centre of curvature on a cross-section 
of the tube is small near the entrance for a uniformly distributed inlet velocity 
profile. The resultant of the nearly uniformly distributed pressure gradient and 
the strong centrifugal force will accelerate the fluid in the central core. The flow 

t Singh's solution up to distances O(a) ,  in which centrifugal forces are a second-order 
effect, is, however, uniformly valid for all values of the Dean number. (The authors are 
indebted to a reviewer for pointing this out.) 
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is nearly uniform from the inner to the outer wall of the tube (away from the 
centre of curvature). The boundary layer acts as a reservoir, receiving the fluid 
moving towards the outer wall, and also as a source of fluid leaving it at  the 
inner wall. This is consistent with mass conservation for the boundary layers 
in the cross-section of the tube. The resulting cross-flow forms a stagnation- 
like flow locally along the outer wall of the tube. The convective effect of this 
locally stagnant flow prevents the secondary boundary layer from growing. 
Thus, the secondary boundary layer will remain thin as the flow asymptotically 
approaches the fully developed state (Bama's flow). As will be shown later, the 
distance at which the fully developed state is reached is O( (aRD)*), or equivalently 
O(aReD-t), i.e. smaller by a factor D-* than the entry length for the case of 
low or moderate Dean number. The remainder of the paper will be concerned 
with the entry flow for large D. 

2. Equations of motion 
Two different sets of co-ordinates are used in the analysis. (See figure 1. )  

The toroidal co-ordinates (r,  y?, 0) are used to describe the motion of fluid close 
to the pipe wall, where r denotes the distance from the centre of the cross-section 
of the pipe, y? the angle between the radius vector and the normal to the plane 
of symmetry, and 8 the angular distance of the cross-section from the entry of 
the pipe. Let (u, v, w) denote the corresponding velocity components. The 
equations of motion are the continuity equation 

0 
i aw 

- =  
1 usiny? 1 av vcosy? 
r ar R+rsiny? r ay?R+rsiny? R+rsiny?ae +--- + -- 

and the Navier-Stokes equations 

au vau w au v2 w2sin y? 
ar r ay? R+rsiny?%-r-R+rsiny? 

u-+--+ 

- w sin y? + (R + r sin y?) 
1 

w av uv w ~ ~ o s y ?  -+-- av v av 
u-+--+ 

ar ray? R+rsiny?aO r R+rsin& 

1 av R + r sin y? aw - 
(R + r sin y?)2 % ae 

aw v a w  w aw w(u,sin 4 + v cos y?) 
u-+--+ -+ ar ray? R+rsiny?aO R + r  sin @ 

- + v  aP -f- a i -- aw (E-wsiny?)] 
1 = -  

p(R+rsin$)aB ((ar r )  [Sr  R+rsiny? a8 

1 - w cos $)I). (1  d )  
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FIGURE 1. Go-ordinate systems. 

Cylindrical polar co-ordinates (?;, 8, z ) ,  with origin at the centre of curvature, 
are used to describe the motion of fluid far from the pipe wall, with the z axis 
passing through the centre of curvature and perpendicular to the plane of 
symmetry of the pipe. Here ( U ,  V ,  W) will denote the corresponding velocity 
components. In  terms of these co-ordinates, equations ( 1 )  are 

ia(?;u) av l a w  
r ar az r ae ’ 
-- +-+-- = o  

au au wau w2 
U-+V-+T--- ar ax r a0 r 

aw aw waw uw u-+V--+T-+- ar az r 88 r 

= --- 

3. Motion outside the boundary layer 
Owing to the cross-flow, developing flow in a curved pipe requires a much 

shorter entrance length to become fully developed than the corresponding flow 
in a straight pipe. The characteristic length of the developing flow in a curved 
pipe can be shown, from the principles of conservation of mass and momentum, 
to be O((aR)&) (Yao 1973), which is different from the characteristic lengths 
Ofa) and OfaRe) for a straight pipe. 

We now can introduce the following non-dimensional variables (outer 

variables) : ro = ( r  - R)/a,  z, = zla, 8, = RB/(Ra)&, 
u, = u/Clm, w, = w/w, vo = v/a*w, 

Po = P/pV2. 
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1 a p  +ar,)u,l avo 1 aw 
1 +ar, ar, ax, i + ~ l r , a ~ ,  

+-+-o = 0, ( 3 4  

I n  the limit D+m, the above set of equations represents the first-order 
inviscid flow. It is a set of three-dimensional, nonlinear, elliptic partial differential 
equations. The boundary conditions are as follows. 

(i) Uniform entrance flow: 

w o =  1, uo= v o =  0 a t  8,= 0 for T ; + z ; <  1. ( 4 4  

u, sin $ + vo cos $ = 0 a t  r; + Z: = 1, $ = tan-: (zo/ro). ( 4 b )  

(ii) Slip boundary condition: 

(iii) Matching condition: 

(w,, u,, v,) +fully developed flow as 8, -+ co for r; + z; d 1. (4c) 

From (3) we see that the centrifugal force is of the same order of magnitude 
as the other inertial forces. Also, the pressure gradients in the cross-sectional 
plane are of order a, compared with the pressure gradient along the axis of the 
pipe. 

Equations (3) with conditions (4) constitute a well-posed boundary-value 
problem. An analytical solution is unlikely to be found owing to the highly 
nonlinear inertia terms; a t  the same time a full numerical solution offers formid- 
able problems owing to  the complicated three-dimensional nature of the equa- 
tions. Thus, we shall adopt the simplifications mentioned in the introduction, 
namely, that the central cross-flow is essentially parallel to  the plane of sym- 
metry. This appears to  be nearly the case for the fully developed flow (Barua 
1963) and should therefore be appropriate as the flow approaches this state. 
This assumption simplifies (3) by neglecting motion in the zo direction. The 
resulting equations show that the geometric influence is small for a < 1. The 
reduced equations are 

a[( 1 + ar,) uo]/ar, + awo/ae, = 0, (5a )  
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If terms of order a and smaller are neglected, apart from the centrifugal force 
term, equations (5) are the inviscid equations of motion describing fluid motion 
in a straight cylinder with the primary flow along the axis of the cylinder. The 
existence of the centrifugal force presents the major mathematical difficulty in 
solving the above equations. But the solution for the fully developed flow in a 
curved pipe for large Dean number (Barua 1963) shows that the dominant part 
of the axial velocity component w,, can be fairly well approximated by an almost 
linear function in r,, with positive slope. Thus we can study, approximately, the 
development of the axial velocity in the 0 direction by writing it in the form 

wo = fl(0lJ -f2(00)/(1 +arch (6) 

where fl and f2 are unknown functions. We note that 
(i) fl - f2 represents the average main axial flow, which is accelerated owing 

to the displacement of the boundary layer developing along the wall of the pipe; 
(ii) afi indicates the way the axial velocity adjusts, owing to the curvature of 

the pipe, to balance the effect of the centrifugal force. 
From (5a)  and (6) the velocity component u,, can be written as 

for small a, where f3 is another unknown function. 

4. Flow in the boundary layer 
Equations ( 1) are normalized by introducing non-dimensional variables 

(inner variables) reflecting the fact that viscous forces are important near the 
pipe wall : 

r1 = (u-r)/u(2/D)*, 0, = 0,) 

Pl = P/PV2. 

u1 = - u/(2a/D)& w, v1 = v /a*T ,  w1 = w / w ,  

The equations become 

-- awl - 0, au, av, avlcos@ -+-+ + 
ar, a@ i+as in@ l+asin@aOl 

aPl/arl = 0, 
w1 awl w;:cOs@ I apl a2vl -- = av av, u -l+v -+ 

l a y ,  l a@ i +  asin@a0, I+as in@ aa@ ar;’ 

ar, a@ i+asin@ae, l+as in@ 1+asin@Z& ar;’ 
awl aw w1 awl ~ w l v l c ~ s ~  - _ -  1 aP1 I a2w1 u1 -+ v1 -2 + -+ 

neglecting terms of order 0-4 and smaller. 
These non-dimensional equations are of boundary-layer type, showing no 

variation in pressure across the thin boundary layer, whose thickness is of order 
0-3. The pressure gradients parallel to the pipe wall can be evaluated from the 
outer solution a t  the edge of the boundary layer. Since the cross-flow is small 
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compared with the flow along the axis of the pipe, we can approximate these 
pressure gradients as 

1 aP1 - - Go" cos $ 

1 ?Pl= w, aw, 

- 
aa$ l+asin$'  

l + a s i n + q  I+asin@aB,'  

- 

- 

where Go is the axial velocity component at  the edge of the boundary layer. 
Substitution of the above into the boundary-layer equations gives 

- 

(84 
awl wo aw, awl~,cOs$ 5- azw, 

w1 -- awl am, 
asin+aO, l+asin$-aOo l+as in$  ar; * ar, all. I + -+ u,-+w -+ 

A K&rm&n-Pohlhausen type of approximation is used to solve (8). This 
consists of assuming an arbitrary form for the velocity distribution in the 
boundary layer and then requiring that it satisfy the no-slip boundary conditions 
at  the pipe wall, match with the outer solution a t  the edge of the boundary layer 
and satisfy the momentum integrals for the boundary layer. 

To obtain these integrals, we integrate (8 b )  and ( 8 c )  across the boundary layer, 
assumed to be of thickness 8,: 

For a thin boundary layer, u1 at rl = 6, is small compared with the other velocity 
components. Also, vl at  rl = 6, is small for small cross-flow outside the boundary 
layer. Again, ul, v1 and w1 vanish at rl = 0. Hence we have 

ulwll$ = 0, 

UlWllOs' = Ulwl(r,=S,= - ~OUlIr,=S,. 

We now assume a form for the distribution of velocity through the boundary 
layer. Simple series expressions which satisfy the required boundary conditions, 
namely v, = w1 = 0 at rl = 0, and v1 = 0, w1 = Wo and av,/ar, = awl/&, = 0 at 
rl = a,, are 

(10) 
v 1 =  2.',(7-272+7 ) - 'u 4 ( 

- -l w1 = W O P 7  - 7 7  = wo#zI7)2 
- 
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FIGURE 2. Velocity distribution in the boundary layer. 

where 7 = r1/8,, and 5, and Go are functions of $ and 8,. It may be noted that 
v1 is small and not exactly equal to zero at  the edge of the boundary layer; 
this approximation is, however, not expected to alter the results appreciably. 
The functions q5, and q52 are plotted in figure 2. With these particular forms for 
4, and q52, we have 

so’ 4S1q52d7 = A. 
Equations (9) then reduce to 

1 a(slV2,) a s,v; 1 a -- +- - (s,wov,) 
105 a@ 1051+asin$+20(1+asin$)~8, 

The unknown quantities El and 8, are to be determined from ( I  1) and (12). 
The difficulty in solving these equations is the presence of the unknown functions 
f, and f2 implicitly in the function Go. Rearranging ( 1  1) gives 

This shows that once the product S, V,, the mass flow rate of the secondary flow 
inside the boundary layer, is known, the first three terms on the right-hand side of 
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(13) can be evaluated. From the solution for fully developed flow in a curved pipe 
we know that the thickness of the boundary layer varies little with $, except a t  
the separation point near the rear stagnation point ($ = - 90"). Assuming that 
this is approximately true also for the developing flow, we can evaluate the last 
two terms on the right-hand side of (13) by approximating 6, and 86,/88, for 
different 8, by the mean values 8, and d8Jd6, on each cross-section of the tube. 
The two integral forms of mass conservation derived in the following subsections 
supply a means of evaluating Z1 and dZl/d8, in terms of the inviscid outer solution. 

Conservation of mass along the tube 
Here we consider the relationship between the thickness of the boundary layer 
and the accelerating inviscid flow. The integral form of mass conservation relating 
them can be written as 

where the term on the left is the amount of fluid that enters the pipe, the first 
term on the right is the volume flow rate of the accelerating inviscid flow and 
the second term is the fluid deficit due to the existence of the secondary boundary 
layer. Using ( 5 ) ,  (6) and (10) to carry out the above integrations, and assuming 
that S, can be approximated by 8,(8), we obtain 

a1 = 1.5 (f, -fz - l)/(fl -f2L 
so that d8l/d@l = 1.5 (fi -fz)'l(f1 -fd2, (14) 

where So = 6,( 2 / 0 ) 4  = S/a, similarly for its mean value. 

Conservation of mass of the secondary flow 
Since there is a cross-flow outside the boundary layer transporting fluid from 
the inside tube wall $ M - 90" to the outside tube wall $ M go", the boundary 
layer acts as a reservoir, receiving fluid between approximately $ = 0 and 
$ = 90" and releasing it between $ = 0 and $ = - 90". The flow pattern is 
symmetric with respect to the line @ = k 90". The integral form of this mass 
conservation is 

The first term of the above equation is the amount of fluid that enters or leaves 
the boundary layer between $ = 90" and any station $, the second term is 
the amount of fluid that flows through the boundary layer at the station $ and 
the third term is the change in flow rate in the boundary layer along the axial 
direction. Carrying out the above integrations with the help of ( 5 ) ,  (6) and (10) 
gives 
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The thickness of the boundary layer can be determined from (11) with the 
help of (13) and (15): 

5. Determinations of the functions fl, f 2  and f 3  

The momentum equations (1 1) and (12) for the boundary layer can be solved 
in terms of the outer solution for the inviscid flow through the unknown func- 
tions fl, fi and f3. These functions can be determined by matching the outer and 
inner solutions. Equation (15) shows that, for small a, the mass flow rate &, has 
a maximum in the neighbourhood of $ = 0 (and 180'). Physical intuition that 
the boundary layer acts as a reservoir, receiving fluid in the domain 180" 2 $ 2 0 
and losing it in the domain 0 2 $ 2 - 180", suggests that the flow rate in the 
boundary layer will attain its maximum at $ = 0 (and 180"). Since the variation 
of the boundary-layer thickness with respect to @ is small, the above argument 
can be replaced by the statement that El attains its maximum a t  @ = 0 (and ISO'), 
i.e. 

aEl/a$ = 0 a t  @ = 0,180". (17)  

The axial velocity of the accelerating flow due to the displacement effect of 
the boundary layer is of order 1 + O(6) .  From (6), it  follows that fl - f 2  = O(D-t),  
because 6 is O(D-4). Prom (15), we know thatf;, f ;  and f 3  are O(D-8). Thus we 
conclude that 8, will be O(Dfr) when the flow approaches its fully developed 
state. With the above estimates, we can set? 

(18) I fl(80) - f 2 ( 8 0 )  = 1 +g1(@ D-4 
fi( '0) = g2(')la, f 3 ( 8 0 )  = 93($) Dt,  

where B = 8, D-4 = 8, D-4 is the downstream variable characterizing the region 
where the flow is asymptotically approaching the fully developed state. Taking 
the derivative of (12) with respect to $ and rearranging (11) with the help of 
conditions (17) and (is), we obtain 

g2 = { [ 3 6 ( g 2 + 2 a ) 2 + 8 ( 2 - a g 2 + 3 ( ~ -  l)g~)]4-6(gi+2a)}g3/77 

= F(g2; a )  93/77 (191 
and 

& + 3.225g2g39i + 6*45(g,g3)292 + 4.06(g2g,)3 - 24.119, + O(D-4) = 0, (20) 

t It can be shown that equations (3 ) ,  derived earlier using the previous scaling, are 
also valid in this region; i.e. equations (3) are uniformly valid at  distances up to O((uRD)*). 
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after neglecting smaller-order terms, where a dot over a function denotes its 
derivative with respect to 8. The required third relation between fl, f, and f, 
is obtained from the assumption that the variation of the thickness of the 
boundary layer with respect to @ is small, i.e., Zl = 811+o. Combining this with 
(14), (16) and (18) yields 

gi = ?[15ng2g3+  72g2&l’- (21) 

Equation (20) has lost its second-order derivative terms, indicating that this 
simplified form is not valid for small values of 8. It represents the downstream 
flow (in modern terminology, an outer solution). It does show that a much 
simpler relation exists among g,, g, and g, away from the immediate neighbour- 
hood of the entrance of the tube. Note particularly that the function g1 is un- 
coupled from g2 and g, in (1 9) and (20), and can be determined by (2 1 ) after the 
determination of g, and g, from (19) and (20). Eliminating g, between (19) and 
(20) gives 

24.1 1%. 
P3 + 3.225 F2g, + 6.45 Fgi + 4-06 gg 

Substitution of (18) into (14) and (15) yields 

-sd a d8 [ l - 5 g l 6 - - $ )  (l+g,sin@+O(a) 

Since the fully developed flow is independent of 8, the asymptotic values of 
g,, g ,  and g, can be evaluated from (19)-(21) by setting the 8-derivative terms 
equal to zero, which gives 

g, = {[a2 + 24( 1 - a)]* - a}/6( 1 - a), 

g, = 1.56/gi, gl = 2.425gig3. 

These relations agree with Barua’s (1963) results for fully developed flow in a 
curved pipe. 

For small 8, the first term of the series solution of (1  1) is equivalent to taking 
the limit of (11) as 8+0; doing so we obtain 

lim [&a( 8,~,w,)/a8 - & 8 , ~ & = ~  = 0. 

Rearrangement of the above relation and use of (18)) (23) and (24) gives 

g2 = %a(l+g ,D- i )D .  (25) 

This is the upstream solution (or inner solution), which shows how the inviscid 
velocity profile adjusts itself to balance the centrifugal force when the fluid 
enters the curved pipe. 

The initial conditions (4a),  in terms of gl, g ,  and g,,  are 

Sl(0) = 92(0) = 93(0) = 0, & ( O )  = 42(0) = 0. (26) 
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FIGURES 3(a, b ) .  For legend see next page. 

Thus, the values of g ,  can be determined as follows. 
(i) Integrate (25) with conditions (26 )  for small 8. 
(ii) Guess a value 8 = 8, and evaluate g2(8,) and g2(8,) from (25). 
(iii) Evaluate gZ(8,) = g2[F(&; a)] from (22), where 9, = g2(Bnb). 
(iv) Check that the difference between the values of g,(8,) obtained from (25) 

and ( 2 2 )  respectively is less than B. 

(v) Iterate the above four steps to get Bm and g,(8,) for E+O,  which gives 
the continuous values of g ,  and g2 a t  8 = 8,) i.e. a continuous velocity a t  8 = 8,. 

(vi) Use the Runge-Kutta scheme to integrate (22) numerically with the 
g2(8,) obtained in step (v). 
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FIGURE 3. Functions (a) g1 and gz, (6) g3 and (c )  dg,/d8. 

0 0 A 
Re 1000 2000 2000 
a 0.05 0.05 0. I 
D 447.21 894.43 1264.91 

With g, known, g1 and g ,  can easily be evaluated from (19) and (21). 
The numerical results for gl, g,, g, and g2 are shown in figures 3(a)-(c) for 

different combinations of a and Re. The curves differ from each other in the 
domain close to the entrance, and asymptotically approach a-dependent fully 
developed flow. Since the fully developed flow depends weakly on a, the difference 
between the curves at  this stage of the flow for different values of a is too small 
to be seen in these figures. Close to the entrance, the values of g,, g,, g3 and g, 
vary with Dean number. In  figure 3 the steep initial rises in each of the functions 
plotted occur over a region whose extent is of order (aR)&, the initial scale of Re. 

6. ResuIts and discussion 
Velocity distributions and secondary boundary-layer thickness 

The speed G1 of the secondary flow has been calculated from ( I  3) for a Reynolds 
number of 2000 and a = 0.05, which corresponds to a Dean number of 894.43. 
The development of the secondary flow velocity along the pipe is shown in 
figure 4 (a )  for different yk. The abrupt change in the curve for $ = - 60" is 
due to separation of the boundary layer, which occurs in the neighbourhood of 
this angle, in agreement with Barua's analysis and Squire's measurements 
(Barua 1963). The location of the separation point as a function of distance 
down the pipe is presented in figure 4 (b) .  

The distribution of the boundary-layer thickness for different $ as a function 
of 8 is plotted in figure 5 .  The occurrence of a maximum value for 8, before the 
flow becomes fully developed indicates that the cross-flow in the central core 
of the tube prevents the boundary layer from diffusing further out. The curve 
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as 

for @ = - 60" in figure 5 shows that the boundary layer grows very rapidly near 
the separation point. The distributions of the velocity ;ii, and the boundary- 
layer thickness 8, over each cross-section are shown in figures 6 ( a )  and (b ) .  

Pressure drop 

The fluid flow along the pipe is accompanied by a fall in the pressure head. The 
pressure gradient along the pipe can be evaluated from (5 c )  : 

FIGURE 4. (a )  Secondary flow velocity and ( b )  location of separation point as 
functions of downstream distance. Re = 2000, a = 0.05, D = 894.43. 
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FIGURE 5. Boundary-layer thickness. Re = 2000, a = 0.05, D = 494.43. 

Rewriting this in terms of the functions fi, f 2  and f3 gives 

The first term on the right-hand side is the pressure gradient needed to maintain 
the flow pattern under the centrifugal force. The other terms represent the 
pressure gradient which is necessary to accelerate the fluid flowing along the 
pipe owing to the displacement effect of the boundary layer and interaction 
between cross-flow and accelerating flow. From relations (18) we can see that 
the pressure gradient due to viscous effects is of smaller order than that due to 
the inertia effect, represented by the hs t  term. This is so because the boundary 
layer is very thin and the acceleration of the main flow due to the displacement 
effect is small. 

Substitution of (I 8) into (27) allows us to write 

To evaluate the pressure drop along the pipe, the mean value of the pressure 
gradient over the cross-section is introduced: 
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FIGURE 6. Distribution of ( a )  secondary 4ow velocity and ( b )  boundary-layer thickness 
over each cross-section. Re = 2000, a = 0.05, D = 894.43. (a) 0, 8 = 0.02; 0, 8 = 0.5; 
A , 8  = 1.0. 
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where A = nu2 is the cross-sectional area of the pipe. Thus, 

Integration of this equation along the axis of the pipe, starting a t  the entrance, 
gives 

where Po is the pressure at  the entrance. Defining the pressure difference K(8)  
between the developing flow and the fully developed flow as 

(28) becomes (29) 

where (AP),  = 2[a +g2(oo)] g3(co)  8/( 1 - a)2 is the pressure drop for the fully 
developed flow. The values of K(8)  for Re = 2000 and a! = 0-05 are presented in 
figure 7, which shows that the pressure drop in the entry region is in fact less 
than the loss of pressure head necessary to maintain the fully developed flow. This 
perhaps surprising result is a consequence of the fact that the cross-flow in the 
entrance region is smaller than that for the fully developed flow. 

The length of the entry region 

The length of the entry region can be defined as that value of 8 at which the 
function g2 takes on 99 yo of its value for the fully developed flow. The length 
of the entry flow is conveniently written as 

I ,  = e,(D/cc)ga. ( 30) 
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FIGURE 8. Coefficient of entry length. 

The values of e,  turn out to be weakly dependent on the values of a, and are 
not sensitive to the Reynolds number. Typical values of el, as plotted in figure 
8, can be represented by a straight line within the range of practical interest. 

The entry length for straight tubes is approximately (Bargie & Martin 1971) 

1, = 0.25 a Re. (31) 

lJ1, = 8e1/D3, (32) 
The ratio of (30) to (31) is 

which shows that the entry length for a curved pipe, for large D, is much shorter 
tthan that for the corresponding straight tube. For a = 0.05 and Re = 2000, for 
which D = 894.43, we find that &/lS = 0.584. For this typical value, the entry 
length is approximately equal to half that for a straight pipe. 

In  view of the various approximations involved, perhaps no more than a 
qualitative validity can be claimed for these results. The assumption that out- 
side the boundary layer the motion is confined to planes parallel to the plane of 
symmetry of the tube is perhaps drastic and is not strict,ly valid in the region near 
the entrance and the pipe wall; its validity, however, should improve as the 
flow approaches the fully developed state. Furthermore, the assumed simple 
expression for the inviscid velocity is in the nature of a perturbation of the fully 
developed flow. In  spite of the simplifications adopted in the analysis, this model, 
a t  least, fulfils the purpose of describing clearly the characteristics and behaviour 
of the entry flow in curved pipes. This effort cangive guidance to future numerical 
work on the same subject. Also, the analysis exposes the analytical dependence 
of the problem, which is implicitly involved in the analysis and would be im- 
possible to detect without going through a similar procedure. Certainly knowing 
correct scales is important in treating experimental data. Ultimately, the accu- 
racy of the analysis would have to be verified by numerical integration of the 
Navier-Stokes equations, or from reliable experimental data. 

This work was supported by the National Science Foundation under Grant 
ENG73-03970 A01. 
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